If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x=54000
We move all terms to the left:
x^2+2x-(54000)=0
a = 1; b = 2; c = -54000;
Δ = b2-4ac
Δ = 22-4·1·(-54000)
Δ = 216004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216004}=\sqrt{4*54001}=\sqrt{4}*\sqrt{54001}=2\sqrt{54001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{54001}}{2*1}=\frac{-2-2\sqrt{54001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{54001}}{2*1}=\frac{-2+2\sqrt{54001}}{2} $
| 2n+5=3n+10 | | 49x2-4(Y+11)=3Y-2 | | 12*z=24- | | y=2/5*0-2 | | 7x-5=3x-13+2x | | (9x+40)=83 | | y=-6-2/2 | | 4t+3.5t=9 | | 6,5+r=1,48 | | (3y^2-6y+5)=(-4y^2+7y+2) | | y=12*0+6 | | 6d-3d=18 | | 17x-13x=20 | | q-0.7=1.4 | | y=7*0-14 | | 7g-2=42 | | (2x-2)/2x^2−2x−10=0 | | 1/4n+3/1=8 | | 75u+2=12. | | 6n=30+2(n+4) | | 3x-5*0=30 | | 4x-6=1x-2 | | 1/2(6x+20)=1/4(16x-8) | | -6x+6=-1x-1 | | 6n=30+3n(–4) | | −7−6x=-31 | | 5x+29=44 | | 6x-3=11x+1 | | 5/2c=81/3= | | 1/25=5^3x+1 | | 0=13h-4h | | 10x=130—3x |